The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  X  1  X  1  X  1  1  X  1  X  X  1  X  X  X  X  X  X  X  1  1  1  1  1  X  X X^2  0 X^2  0 X^2  0 X^2  2 X^2  0 X^2 X^2  2  2 X^2
 0 X^2+2  0 X^2+2  0 X^2+2  0 X^2+2  2 X^2  2 X^2  2 X^2  2 X^2  0 X^2+2  0 X^2+2 X^2+2  0 X^2+2 X^2+2 X^2+2  0 X^2+2 X^2+2  2  0  2  0  0  2 X^2 X^2  2 X^2  2 X^2  2 X^2 X^2 X^2  2 X^2  0  2 X^2+2 X^2 X^2+2 X^2 X^2+2 X^2 X^2+2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2
 0  0  2  0  0  2  2  2  2  2  2  2  0  0  0  0  0  0  0  0  2  2  2  2  0  2  0  2  2  0  0  2  2  2  2  2  2  0  2  0  0  2  2  0  0  0  0  0  0  0  2  2  0  0  2  2  2  2  0  0  2  0  2
 0  0  0  2  2  2  2  0  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  2  2  0  0  0  0  2  2  0  2  2  0  2  0  2  2  0  2  0  2  2  0  0  0  0  0  2  2  0  2  0  0  2  0  2  2  0  0  2  2

generates a code of length 63 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 62.

Homogenous weight enumerator: w(x)=1x^0+60x^62+128x^63+63x^64+4x^78

The gray image is a code over GF(2) with n=504, k=8 and d=248.
This code was found by Heurico 1.16 in 0.219 seconds.